21 research outputs found

    Hardware and software optimization of fourier transform infrared spectrometry on hybrid-FPGAs

    Get PDF
    With the increasing complexity of today’s spacecrafts, there exists a concern that the on-board flight computer may be overburdened with various processing tasks. Currently available processors used by NASA are struggling to meet the requirements of scientific experiments [1, 2]. A new computational platform will soon be needed to contend with the increasing demands of future space missions. Recently developed hybrid field-programmable gate arrays (FPGA) offer the versatility of running diverse software applications on embedded processors while at the same time taking advantage of reconfigurable hardware resources, all on the same chip package. These tightly coupled HW/SW systems consume less power than general-purpose singleboard computers (SBC) and promise breakthrough performance previously impossible with traditional processors and reconfigurable devices. This thesis takes an existing floating-point intensive data processing algorithm, used for on-board spacecraft Fourier transform infrared (FTIR) spectrometry, ports it into the embedded PowerPC 405 (PPC405) processor, and evaluates system performance after applying different hardware and software optimizations and architectural configurations of the hybrid-FPGA. The hardware optimizations include Xilinx’s floating-point unit (FPU) for efficient single-precision floating-point calculations and a dedicated single-precision dot-product co-processor assembled from basic floating-point operator cores. The software optimizations include utilizing a non-ANSI single-precision math library as well as IBM’s PowerPC performance libraries recompiled for double-precision arithmetic only. The outcome of this thesis is a fully functional, optimized FTIR spectrometry algorithm implemented on a hybrid-FPGA. The computational and power performance of this system is evaluated and compared to a general-purpose SBC currently used for spacecraft data processing. Suggestions for future work, including a dual-processor concept, are given

    Spaceborne Hybrid-FPGA System for Processing FTIR Data

    Get PDF
    Progress has been made in a continuing effort to develop a spaceborne computer system for processing readout data from a Fourier-transform infrared (FTIR) spectrometer to reduce the volume of data transmitted to Earth. The approach followed in this effort, oriented toward reducing design time and reducing the size and weight of the spectrometer electronics, has been to exploit the versatility of recently developed hybrid field-programmable gate arrays (FPGAs) to run diverse software on embedded processors while also taking advantage of the reconfigurable hardware resources of the FPGAs

    Mathematical Model of the Shell with the Infill for Retaining Structures

    Get PDF
    A description of finite element model and analysis of a shell with an infill is performed. A large diameter thin cylindrical shell structure with the edge leaning against compressible foundation soil is analyzed. Different materials are considered individually for the models of each structure shell and infill component (metal or reinforced concrete shell, and granular or elastic infill in a shell and foundation soil loaded by the structure). Contact conditions between 1) the infill and the shell’s inner surface and 2) between the foundation material and the shell edge are analyzed. An example of calculating strain conditions in the shell according to the proposed finite element model and tasks of its development process and specification are provided in this paper

    The Geostationary Carbon Process Mapper

    Get PDF
    The Geostationary Carbon Process Mapper (GCPM) is an earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. The measurement strategy delivers a process based understanding of the carbon cycle that is accurate and extensible from city to regional and continental scales. This understanding comes from contiguous maps of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) collected up to 10 times per day at high spatial resolution (~4km × 4km) from geostationary orbit (GEO). These measurements will capture the spatial and temporal variability of the carbon cycle across diurnal, synoptic, seasonal and interannual time scales. The CO2/CH4/CO/CF measurement suite has been specifically selected because their combination provides the information needed to disentangle natural and anthropogenic contributions to atmospheric carbon concentrations and to minimize key uncertainties in the flow of carbon between the atmosphere and surface since they place constraints on both biogenic uptake and release as well as on combustion emissions. Additionally, GCPM's combination of high-resolution mapping and high measurement frequency provide quasi-continuous monitoring, effectively eliminating atmospheric transport uncertainties from source/sink inversion modeling. GCPM uses a single instrument, the “Geostationary Fourier Transform Spectrometer (GeoFTS)” to make measurements in the near infrared spectral region at high spectral resolution. The GeoFTS is a half meter cube size instrument designed to be a secondary “hosted” payload on a commercial GEO satellite. NASA and other government agencies have adopted the hosted payload implementation approach because it substantially reduces the overall mission cost. This paper presents a hosted payload implementation approach for measuring the major carbon-containing gases in the atmosphere from the geostationary vantage point, to affordably advance the scientific understating of carbon cycle processes and climate change

    Nebulae: A Proposed Concept of Operation for Deep Space Computing Clouds

    Get PDF
    In this paper, we describe an ongoing multi-institution study in using emplaced computational resources such as high-volume storage and fast processing to enable instruments to gather and store much more data than would normally be possible, even if it cannot be downlinked to Earth in any reasonable time. The primary focus of the study is designing science pipelines for on-site summarization, archival for future downlink, and multisensor fusion. A secondary focus is on providing support for increasingly autonomous systems, including mapping, planning, and multi-platform collaboration. Key to both of these concepts is treating the spacecraft not as an autonomous agent but as an interactive batch processor, which allows us to avoid “quantum leaps” in machine intelligence required to realize the concepts. Our goal is to discuss preliminary results and technical directions for the community, and identify promising new opportunities for multi-sensor fusion with the help of planetary researchers

    Validation of Real-Time Data Processing for the Ground and Air-MSPI Systems

    No full text
    JPL is currently developing the multi-angle spectro-polarimetric imager (MSPI), targeted for the Aerosol-Cloud-Ecosystems (ACE) mission, as defined in the National Academies 2007 Decadal Survey. In preparation for the space instrument, the MSPI team has built two incremental camera systems (Ground- and Air-MSPI) to improve understanding of the proposed architecture. Ground-MSPI is a gimballed instrument used primarily for stationary observation and characterization of the imager and optics. The ER-2 based Air-MSPI operates in a step-and-stare mode, providing multi-angle imaging of a static target. This mode-of-operation simulates the observation scenario of the space instrument. Physically, MSPI is a pushbroom camera with a specialized frontend. Before imaging, light entering the camera passes through a pair of photoelastic modulators and a set of pattern polarizers. These optical elements act on the light to make polarimetric extraction computationally feasible. Calculating polarimetric parameters from the imager's data stream requires a real-time least-squares computation that produces coefficients of a truncated time-series expansion of the image. As reported in, the data processing algorithm can operate in real-time on a Xilinx Virtex-5 FPGA. Moving beyond verification with an onboard data source, the algorithm has been validated on a commercial development board interfaced with the ground camera. In addition, the algorithm has been instantiated within the Air-MSPI electronics board's FPGA, and in situ first-light has been achieved

    Real-Time On-Board Processing Validation of MSPI Ground Camera Images

    No full text
    The Earth Sciences Decadal Survey identifies a multiangle, multispectral, high-accuracy polarization imager as one requirement for the Aerosol-Cloud-Ecosystem (ACE) mission. JPL has been developing a Multiangle SpectroPolarimetric Imager (MSPI) as a candidate to fill this need. A key technology development needed for MSPI is on-board signal processing to calculate polarimetry data as imaged by each of the 9 cameras forming the instrument. With funding from NASA's Advanced Information Systems Technology (AIST) Program, JPL is solving the real-time data processing requirements to demonstrate, for the first time, how signal data at 95 Mbytes/sec over 16-channels for each of the 9 multiangle cameras in the spaceborne instrument can be reduced on-board to 0.45 Mbytes/sec. This will produce the intensity and polarization data needed to characterize aerosol and cloud microphysical properties. Using the Xilinx Virtex-5 FPGA including PowerPC440 processors we have implemented a least squares fitting algorithm that extracts intensity and polarimetric parameters in real-time, thereby substantially reducing the image data volume for spacecraft downlink without loss of science information

    ISAAC - A Case of Highly-Reusable, Highly-Capable Computing and Control Platform for Radar Applications

    No full text
    ISAAC is a highly capable, highly reusable, modular, and integrated FPGA-based common instrument control and computing platform for a wide range of instrument needs as defined in the Earth Science National Research Council (NRC) Decadal Survey Report. This paper presents its motivation, technical approach, and the infrastructure elements. It also describes the first prototype, ISAAC I, and its application in the design of SMAP L-band radar digital filter
    corecore